INFOGRAPHICS SUMMARY

MAKING NET-ZERO, 1.5°C-ALIGNED AVIATION POSSIBLE
MAKING NET-ZERO, 1.5°C-ALIGNED AVIATION POSSIBLE

1. The solutions: Fuel efficiency gains and SAFs are the main decarbonisation options

Two scenarios: Annual GHG emissions reduction, Gt CO₂e

Cumulative GHG emissions of 22–21 Gt CO₂e between 2022 and 2050, compared with 47 Gt CO₂e in a Business-as-Usual scenario

Percent of cumulative GHG reduction, between 2022 and 2050

- Fuel efficiency: 40%–45%
 - More efficient turbines
 - More aerodynamic airframes
 - Air traffic management improvements
- Novel propulsion aircraft: 5%–15%
 - Hydrogen fuel cell/combustion aircraft
 - Battery-electric aircraft
 - Hybrid-electric aircraft
- Power-to-Liquids: 15%–25%
 - Jet fuel produced from renewable electricity and captured CO₂
- Biofuels: 20%–35%
 - Jet fuel produced from sustainable biomass
- CO₂ Removals: ~2%
 - E.g., direct air capture and storage

2. What it will take

Annual capital investments for net zero, billion $ compared with a BAU scenario

- Annual average investments: ~$175 billion
- 95% of investments required for fuel production and upstream infrastructure

SAFs are about 2–5x more expensive than fossil jet fuel.

- SAF production cost, in $/tonne
- Multiple of historical average jet fuel price: 9
- Historical fossil jet fuel price of past two decades:
 - Fluctuations: $135–$1,590/t
 - Average: $600–$650/t

Resource requirements, share of global demand by 2050

- Renewable electricity: 5–10%
 - 6,000–9,000 TWh out of 90,000–130,000 TWh
- Green hydrogen: 10–30%
 - 100–160 Mt out of 500–800 Mt
- Sustainable biomass: 5–25%
 - 4–12 EJ out of available supply of 50–110 EJ
- Captured carbon*: 5–10%
 - 0.50–0.85 Gt CO₂ out of ~12 Gt CO₂ CDR

Despite higher fuel costs, the cost of flying could see no increase but stay constant or even decrease by 5% by 2050 due to efficiency gains.
Key milestones

<table>
<thead>
<tr>
<th>Share of SAFs on final jet fuel demand</th>
<th>2019</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>13%–15%</td>
<td>60%–65%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAF production</th>
<th>2019</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05 Mt</td>
<td>40–50 Mt</td>
<td>215–230 Mt</td>
<td>300–370 Mt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of SAF plants</th>
<th>2019</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEWER THAN 10</td>
<td>1,600–3,400</td>
<td>300–400</td>
<td>1,500–2,300</td>
<td>1,600–3,400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of hydrogen and battery-electric aircraft</th>
<th>2019</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800–8,000</td>
<td>12,500–26,000</td>
<td>30,000–49,000</td>
<td></td>
</tr>
</tbody>
</table>

Priorities for this decade

INDUSTRY ACTION TO BOOST SUPPLY
- Invest in RD&D for low-TRL technologies and efficiency measures to reduce energy demand
- Bring down feedstock costs (renewable electricity, hydrogen, sustainable biomass, and captured CO₂) and redirect biomass use from road transport to aviation
- Create industry consortia to share risk for first- and second-of-a-kind projects and supply 40–50 Mt SAF by 2030

INDUSTRY ACTION TO BOOST DEMAND
- Double current offtake agreements between SAF producers and customers by 2025, and increase volumes by a factor of 5 until 2030
- Boost advanced market commitments for low-carbon technologies
- Pool demand from multiple sectors (e.g., hydrogen demand for shipping, steel and aviation) to unlock economies of scale

FINANCE ACTION
- De-risk first-of-a-kind projects via public–private partnerships and financing consortia and develop fit-for-purpose financing models for first- and second-of-a-kind plants
- Encourage 1.5°C-aligned target-setting and disclosure of annual metrics to track progress
- Establish exclusion criteria to trigger divestments from non-1.5°C-aligned assets and companies

GOVERNMENT ACTION
- Establish national/ regional blending mandates for SAFs or a GHG intensity reduction pathway via legal emission limits
- Reduce the cost differential between SAFs and fossil jet fuel, e.g., by direct or indirect subsidies (like a blender’s tax credit)
- De-risk first- and second-of-a-kind projects, e.g., via blended finance, concessional loans, capital grants, or long-term guarantees, and use green public procurement to increase the SAF share in public-sector air travel to 20% by 2030